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Abstract 

Background: Spatial epidemiology has been aided by advances in geographic information systems, remote sensing, 
global positioning systems and the development of new statistical methodologies specifically designed for such data. 
Given the growing popularity of these studies, we sought to review and analyze the types of spatial measurement 
errors commonly encountered during spatial epidemiological analysis of spatial data.

Methods: Google Scholar, Medline, and Scopus databases were searched using a broad set of terms for papers 
indexed by a term indicating location (space or geography or location or position) and measurement error (measure-
ment error or measurement inaccuracy or misclassification or uncertainty): we reviewed all papers appearing before 
December 20, 2014. These papers and their citations were reviewed to identify the relevance to our review.

Results: We were able to define and classify spatial measurement errors into four groups: (1) pure spatial location 
measurement errors, including both non-instrumental errors (multiple addresses, geocoding errors, outcome aggre-
gations, and covariate aggregation) and instrumental errors; (2) location-based outcome measurement error (purely 
outcome measurement errors and missing outcome measurements); (3) location-based covariate measurement 
errors (address proxies); and (4) Covariate-Outcome spatial misaligned measurement errors. We propose how these 
four classes of errors can be unified within an integrated theoretical model and possible solutions were discussed.

Conclusion: Spatial measurement errors are ubiquitous threat to the validity of spatial epidemiological studies. We 
propose a systematic framework for understanding the various mechanisms which generate spatial measurement 
errors and present practical examples of such errors.
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Misclassification
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Background
Studying the distribution of health-related events in 
specified population, over time and across space is the 
business of epidemiologists [1]; however, until a decade 
ago, the use of spatial data was mainly descriptive. As 
the rapid development of spatial information techniques 
[e.g., geographic information systems (GIS), remote 
sensing (RS), and global positioning systems (GPS)], the 
availability of spatially referenced health data and asso-
ciated risk factors in digital format has increased greatly 
[2–4]. This has been accompanied by the appearance of 

new software packages for spatial data analysis. Together, 
these developments have created unprecedented new 
opportunities for researchers to investigate the associa-
tion of geographically indexed health events with various 
demographic, environmental, behavioral, socioeconomic, 
and genetic risk factors to explore and explain geographic 
variation in disease risk. Researchers are becoming more 
familiar with space-related epidemiological studies (here-
after referred to as “spatial epidemiology”) [5–7].

As access to spatial data and spatial analytic approaches 
advances, so does the need to address sources of bias in 
spatial epidemiology. In most studies of spatial epidemiol-
ogy, the data are assumed to be reliable and free of meas-
urement errors. But in practice, this is often not the case. 
Measurement errors can affect the data through several 
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mechanisms and many different stages of data collection 
and analysis (the term “measurement errors” is most com-
monly used for continuous variables and “misclassifica-
tion” for categorical variables, but for convenience we will 
use the term of measurement errors in the remainder of 
the paper since misclassification can be considered a spe-
cial case of measurement errors). Spatial measurement 
errors can be random (such as errors originating from a 
GPS device) or there may be quantifiable factors contrib-
uting to the errors (such as errors due to imperfect sen-
sitivity or specificity of a diagnostic test, latency periods 
of diseases, multiple addresses, etc.). While the concept of 
measurement errors is often discussed in classical epide-
miology [8–10], it has not yet received much discussion as 
it relates to spatial epidemiologic studies [11].

Spatial epidemiologic data is like all epidemiologi-
cal data, except it has at least one additional attribute 
describing the spatial or geographical location for each 
observation. Hence, some measurement errors encoun-
tered in spatial epidemiology are analogous to those pre-
viously described in classical epidemiology, but the spatial 
component of the data introduces additional measure-
ment errors which need to be described, categorized, 
and accounted for Elliot et  al. and Beale et  al. [3, 4, 11] 
described this issue with regard to bias and confound-
ing, but there has not been a systematic investigation of 
location-based measurement errors from the spatial per-
spective. A rigorous discussion and classification of these 
types of spatial errors is vital to ensure valid inference can 
be obtained from spatial epidemiologic studies [4].

Methods
Searches for relevant studies were carried out using two 
academic databases (Medline and Scopus) between the 
available earliest date and December 20, 2014. Data-
bases were searched using a broad search term purpose-
fully relating to “space” (space or geography or location 
or position) as well as a term relating to “measurement 
error” (measurement error or measurement inaccuracy 
or misclassification or uncertainty). The search strategy 
was (spatial [Title/Abstract] OR space [Title/Abstract] 
OR geographic  *  [Title/Abstract] OR geography [Title/
Abstract] OR locational [Title/Abstract] OR location 
[Title/Abstract] OR positional [Title/Abstract] OR posi-
tion [Title/Abstract]) AND (measurement error * [Title/
Abstract] OR measurement inaccurac  *  [Title/Abstract] 
OR misclassification  *  [Title/Abstract] OR uncer-
taint  *  [Title/Abstract]) AND (english [Language]). We 
manually reviewed the abstracts to judge the relevance 
with spatial measurement errors and then we reviewed 
the cited references in the selected papers to identify 
additional potential articles. Those studies focusing on 
statistical methods or epidemiologic issues were also 

included in this review, while studies focusing mainly 
on technical problems such as equipment usage were 
deemed out of scope for the current review.

Conceptual framework for classifying sources of spatial 
measurement errors
To discuss the spatial measurement errors systematically, 
we suggest the following conceptual framework as a help-
ful way to effectively organize the topic. We recognize that 
there is no way to completely capture the intricacies of all 
possible routes of measurement errors, however we present 
a basic structure, that can be expanded upon, to begin the 
process of systematically categorizing the types and struc-
ture of these potential errors. Spatial epidemiologic studies 
include two additional variables recording the locations/
positions of observations in the leftmost two columns, 
while the other outcome and covariate variables are often 
similar to those used in classical epidemiology (Fig. 1).

The following four types of spatial measure errors are 
divided accordingly from the point of application:

1. Pure spatial location measurement errors;
2. Location-based outcome measurement errors;
3. Location-based covariate measurement errors; and;
4. Covariate-Outcome spatial misaligned measurement 

errors.

Theoretical model to characterize spatial measurement 
errors
These sources of spatial measurement errors can 
be integrated in a mathematical framework. Spatial 

Fig. 1 Schematic framework for spatial measure errors in spatial epi-
demiology. For Location (①), the geographic coordinates are used as 
an example here. In practice, the Cartesian coordinates can be used 
instead, which is the coordinates used in the process of data analysis; 
For Outcome (②), a dichotomous variable is used for an example and 
only one column is needed. Other types of Outcome variables can 
also have more than one dimension, such as Poisson data, that may 
include a numerator (e.g., number of cases) and denominator (popu-
lation at risk). For simplicity, only one column is used to indicate the 
Outcome. The Covariates (③) may be any combination of categorical 
or continuous variables. The error caused by the correspondence 
between Outcome and Covariates is marked as ④
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epidemiology studies include two variables represent-
ing outcome locations (L), outcome measurements (Y), 
and covariate measures (X) that may include spatial 
information as well. Consider one example where the 
unit of analysis is the individual, and a researcher is try-
ing to identify associations between cancer status and 
exposure to contaminated drinking water. In this setting 
L would represent the individual’s location, Y would 
be that individuals case or control status, and X could 
represent an individual’s spatially varying exposure 
(e.g., amount of exposure to contaminated water). In 
another setting, one may be interested in relating deaths 
in a zip code to air pollution concentrations measured 
at an air pollution monitoring site. In this second sce-
nario, L would be the common location assigned to eve-
ryone in the same zip code, Y would be the number of 
deaths observed, and X would be the spatially varying 
measure of air pollution that would be assigned to all 
individuals within a certain radius of the monitoring 
site. Suppose (L0, Y0, X0) are the true measures of the 
outcome location, outcome, and covariate measures, 
respectively. In practice this information is measured 
with some errors. Let (L, Y, X) are the observed values 
of the outcome location, outcome, and covariate meas-
ures, which are the true value plus measurement errors 
Δ, Δ =  (ΔL, ΔY, ΔX). Each of these individual measure-
ment errors may be a function of location, outcome, or 
exposure, or a combination of these measures. We pre-
sent a simple linear combination framework for these 
potential errors below, but stress that the relationships 
between truth and measurements may be more com-
plex. In the situation where more complex relationships 
may exist, these models can include more advanced 
modeling terms such as interactions between measure-
ments, polynomials, and indicator random variables, or 
even distributional assumptions on the multiplicative 
coefficients. The basic formulation for our measurement 
error framework is given as follows:

In the above equations, we define εL, εY, and εX as 
the residual measurement errors remaining that is not 
directly related to the linear combination of the outcome, 
exposure, or covariates.

Results
7131 papers in Medline and 7595 papers in Scopus were 
found, where 149 papers were identified as closely related 
with the topic discussed in this study and were read thor-
oughly. 97 literatures were cited here.

L = L0 + �L, where�L = γ0L0 + γ1Y+ γ2X+ εL

Y = Y0 + �Y, where�Y = γ3L+ γ4Y0 + γ5X+ εY

X = X0 + �X, where�X = γ6L+ γ7Y+ γ8X0 + εX

Pure spatial location measurement errors
Pure spatial location measurement errors are introduced 
by inaccuracies in the positioning of spatial/geographi-
cal locations that will affect the outcome and covari-
ate simultaneously. These errors can be broken down 
to instrumental errors (e.g., global positioning systems 
errors) and non-instrumental errors (e.g., multiple 
address, geocoding errors, outcome and covariate aggre-
gations). We demonstrate how even pure spatial location 
measurement errors can lead to mismeasurement of both 
the outcomes and covariates, and accordingly, in this sit-
uation, the observed data is of the form (L, Y, X), where 
no γs are guaranteed to be non-zero.

Instrumental errors
Instrumental errors are caused by inaccuracies in the 
tools used to measure the spatial locations (e.g., GPS). It 
is a worldwide, satellite-based, radio-navigation system 
developed by the U.S. Department of Defense (DOD) and 
may be the most widely used tool to obtain the geograph-
ical locations in spatial epidemiologic studies. A ground-
based GPS receiver calculates the time it takes for 
individual signals to arrive from at least three satellites to 
the receiver to compute a two-dimensional location (lati-
tude and longitude), given an assumed height. And the 
detection of satellite signals of four satellites can deter-
mine three-dimensional positions and time, whereas five 
or more can provide greater precision [12]. The accuracy 
of these GPS methods have been well reported [13]. It 
has been shown that positional errors resulting from 
inaccuracies in GPS system influence spatial analytic 
methods by inflating standard errors of estimates, which 
results in reduced power to detect spatial clustering and 
spatio-temporal trends. For example, Armstrong et  al. 
[14] used the classical North Humberside leukemia and 
lymphoma case–control data to quantify the effects of 
increasing levels of positional error perturbation on the 
deterioration of the power of the Cuzick–Edwards test 
for spatial clustering; Cassa et  al. [15] added artificial 
clusters of various shapes and sizes to data on residence 
locations of individuals making hospital emergency 
department visits for respiratory illness. These loca-
tions were then perturbed at various levels according to 
a bivariate normal distribution with standard deviation 
inversely proportional to the local population density. 
The ability of the spatial scan statistic to detect the clus-
ters was quantified and shown to decline as the level of 
perturbation increased; Olson et al. [16] used essentially 
the same baseline data as Cassa et al. [15], but moved the 
locations to zip code or census tract centroids rather than 
perturbing them according to a normal distribution, and 
obtained the qualitatively similar results; Gabrosek and 
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Cressie [17] and Cressie and Kornak [18] investigated, via 
simulation, the impact of circular uniform and normal 
perturbation of location errors on kriging approach and 
trend estimation and the latter authors showed how spa-
tial autocorrelation in a geostatistical model attenuates as 
the perturbation level increases.

However, purely location-based measurement errors 
are inevitable. For example, GPS accuracy is affected by 
many factors such as the atmospheric conditions affect-
ing the velocity of GPS signals, obstructions such as 
concrete and steel within many buildings preventing 
reception of GPS signals, and multi-path errors arising 
from the reflection of satellite signals from other surfaces 
including buildings, vegetation, the ground or water [19]. 
The actual errors may range from only centimeters to 
hundreds meters [12, 20]. In practical applications, the 
main consideration for addressing this type of errors is to 
balance these instrumental errors with the study scale.

In the presence of these instrumental errors, we observe 
the outcome (Y) accurately (γ3 = γ4 = γ5 = 0). The errors 
in the measured locations are not related to the outcome, 
or the covariates (γ1 =  γ2 =  0). As some covariates may 
depend on the mis-measured locations (i.e. PM2.5 expo-
sure at an individual’s home address), observed covariates 
can be biased, meaning non-zero contributions of γ6 and 
γ8. The observed data takes the form (L, Y0, X).

Non‑instrumental errors
Multiple addresses Multiple addresses indicate that the 
studied cases/individuals have several locations where 
exposure or onset of disease may have occurred. Accord-
ingly, multiple addresses raise the possibility of positional 
uncertainty since it may be difficult to ascertain the actual 
location for the outcome(s) and relevant covariate meas-
urements. At the same time, capturing address history 
may provide the opportunity to adjust for this uncertainty 
when attempting to link exposures with outcomes or 
when seeking to identify spatial clusters of cases.

For example, studies of environmental exposures and 
adverse birth outcomes often rely on maternal address at 
birth obtained from the birth certificate to classify expo-
sure. Although the gestational age of interest is often 
early pregnancy, maternal addresses are not available for 
women who move during pregnancy when using mater-
nal addresses abstracted from birth certificates. Chen et al. 
[21] explored the extent of ambient air pollutant exposure 
measurement error due to maternal residential mobility 
during pregnancy among a subgroup within a New York 
birth cohort, but no significant impact was found, which 
may mainly because of limited population mobility; A 
study of breast cancer in Upper Cape Cod, Massachusetts 
demonstrated potential exposure uncertainty introduced 
by a mobile population [22]. The authors conducted three 

separate analyses on a sample of breast cancer cases: (1) all 
cases were considered (2) only cases that have lived at the 
same location for at least 15 years were considered and (3) 
only cases that have lived at the same location for at least 
20  years were considered. The overall results associating 
location and disease (across three separate cluster detec-
tion techniques) showed decreasing p values as the lag 
increases. This result provides evidence of a spatial asso-
ciation that is stronger when only those cases that have not 
recently moved are included.

Several other studies have attempted to recognize the 
influence of multiple addresses, generally by only ana-
lyzing residential locations during a pre-specified time 
interval. One such study found that the most likely clus-
ter of lymphoma in a case–control study was found by 
examining addresses with a 20 year lag period compared 
to the 5, 10, 15 years lag period [23]. Han et al. [24] used 
kernel density estimation methods to identify clustering 
of breast cancer using residential histories. Sabel et  al. 
[25] examined clustering of Amyotrophic Lateral Sclero-
sis in Finland based on place of birth and place of death, 
respectively, showing incomplete agreement. Gallagher 
et  al. [26] used residential histories to assess the affect 
of drinking water exposure to breast cancer, by examin-
ing any previous address where a study participant was 
exposed to public drinking water impacted by effluent.

Another potential solution for using multiple addresses 
involves using weighted distance-based methods to account 
for multiple addresses. By basing tests on the distances 
between locations of interest, researchers can give increased 
weight to addresses that may be more important (or inform-
ative) and less weight to addresses that may be less impor-
tant (or less informative). Weighted distance based cluster 
detection methods have been shown to improve power to 
detect clustering in mobile populations [27].

In the presence of multiple addresses, independent 
of the outcome or covariate, we observe the outcome 
(Y) accurately (γ3 =  γ4 =  γ5 =  0). The errors at meas-
ured locations are not influenced by the outcome, or 
the covariates (γ1 = γ2 = 0). As multiple addresses could 
affect the measured covariate (as is the case in Gallagher 
et al.) [26], γ6 and γ8 may be non-zero. The observed data 
takes the form (L, Y0, X). If the multiple addresses are not 
independent of the outcome or covariate (i.e. moving 
closer to elderly people moving to care facilities, or peo-
ple moving as a result of a shift in socioeconomic status), 
then we can no longer assume that the corresponding γ 
terms are zero, and the observed data may take the form 
(L0, Y0, X) (L, Y0, X0), or (L0, Y0, X0).

Geocoding errors Geocoding requires the matching of 
an address of interest to an address-ranged street segment 
georeferenced within a street-line database, followed by 
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interpolation of the position of the address along that seg-
ment. This is always done through automated geocoding 
techniques widely used in geographical analyses. Unfor-
tunately, geocoding results obtained by these automated 
procedures are well-known to contain positional errors of 
several hundred meters or more (defined here as the (vec-
tor) difference between the location of an address ascer-
tained by automated geocoding and its corresponding 
ground-truth location) [28–41]. For example, in the study 
on a four-county area of upstate New York, Cayo and Tal-
bot [31] found that 10  % of a sample of rural addresses 
geocoded with errors of more than 1.5 km, and 5 percent 
geocoded with errors exceeding 2.8 km; In a case study 
of Orange County, Florida, Zandbergen and Green [42] 
determined the effect of positional errors in geocoding on 
the analysis of exposure to traffic-related air pollution of 
children at school locations through comparisons with a 
parcel database and digital orthophotography, suggesting 
that typical geocoding is insufficient for fine-scale analysis 
of school locations; Mazumdar et al. [43] found, via simu-
lation, that the magnitude of the odds ratio (OR) meas-
uring the relationship between covariates (environmental 
exposure) and the outcome (disease) generally declined 
with decreasing geocoding accuracy; Zimmerman et  al. 
[40] sought to model the probability distribution of posi-
tional errors associated with automated geocoding, where 
the mixtures of bivariate t distributions with few compo-
nents appear to be flexible enough to fit many positional 
error datasets associated with geocoding.

A special case for geocoding errors is when no loca-
tions can be found by geocoding. The standard approach 
for handling these missing geocodes is to discard those 
observations and analyze only complete observations. 
Reich et al. [44] proposed a hierarchical Bayesian spatial 
model to handle missing observation locations. Through 
a simulation study, it was found that this method may 
allow for more reliable epidemiological analysis. The 
authors also applied this method to a study of the rela-
tionship between fine particulate matter and birth out-
comes in southeast Georgia. Oliver et al. [45] described 
geographic bias in GIS analyses with unrepresentative 
data owing to missing geocodes, using as an example 
a spatial analysis of prostate cancer incidence among 
whites and African Americans in Virginia, 1990–1999. 
They found that cluster maps showed patterns that 
appeared markedly different, depending upon whether 
one used all cases or those geocoded to the census tract. 
Geocoding errors will also result in exposure measure-
ment error, which will depend on the spatial variation of 
the exposure being studied [35].

In the presence of geocoding errors, the errors in the 
measured locations are not influenced by the outcome 
(γ1 =  0), but may be influenced by certain covariates 

(i.e. rural vs urban) leading to a potentially nonzero 
contribution of γ2. If we consider the outcome (Y) to be 
a count of the number of cases of a specific disease in a 
census tract or zip code, then the mismeasurement of 
locations of cases could influence these values and (Y) 
may also be inaccurate (γ4 = γ5 = 0). Some covariates 
may still depend on the location (which may be meas-
ured with error) resulting in non-zero contribution of 
γ6 (γ7 = γ8 = 0). The observed data takes the form (L, 
Y, X).

Outcome aggregations Aggregation is a manipulation 
of data that is widely used in spatial epidemiologic stud-
ies either because of the availability of associated data or 
the need to protect confidentiality. Aggregation is usually 
performed at the level of particular administrative units. 
Upon aggregation of outcomes, researcher will need to 
specify a location to represent the aggregated outcome 
for the spatial data analysis. The centroid of the aggre-
gated unit (e.g., postal/zip codes, census tracts, dissemi-
nation areas, blocks or block groups) is frequently used 
as the address proxy for sample unit locations, but this 
will always serve as a source of errors. Additionally, aggre-
gation masks the original detailed outcome information; 
this may be even more complicated if the original (i.e. dis-
aggregated) outcome included measurement errors.

Waller and Jacquez [46, 47] demonstrated empirically 
that the effect of aggregation on tests for focused spatial 
clustering and space–time clustering reduced power, and 
that the amount of power reduction was directly related 
to the level of aggregation. Ozonoff et  al. [48] reported 
that increasing levels of aggregation led the spatial scan 
statistic to not only lose power to detect disease clusters 
but also to increase the false detection rate. Berke and 
Waller [49] used regional aggregated count data to inves-
tigate the measurement error effect of West Nile virus 
infections among dead birds sampled from the 30 pub-
lic health units of southern Ontario in 2005 on semivari-
ogram, Moran’s I statistic and the spatial scan test. They 
found that no serious spatial bias was introduced by the 
use of an imperfect diagnostic test as long as the imper-
fection itself was spatially unbiased.

Aggregation is closely related with the well-known 
modified area unit problems (MAUPs), which remains 
an unsolved problem in geography. But if the aggregation 
bias includes the original outcome measurement errors, 
then Bayesian approaches with probability formulas and 
prior information on the potential measurement error 
probabilities of outcomes may be a promising approach 
for mitigating this issue [50, 51].

In the presence of outcome aggregations, the errors 
associated with the measured locations are not influ-
enced by the outcome, or the covariates (γ1 = γ2 = 0). But 
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the outcome (Y) is not accurate for either the locations or 
the measurement (γ5 =  0), which results in the inaccu-
racy of some covariates (γ6 = γ7 = 0). The observed data 
takes the form (L, Y, X).

Covariate aggregation Covariate aggregation means 
that the aggregated covariates were used in place of indi-
vidual covariates. For example, socio-economic covariates 
(e.g., gross domestic product, GDP) in aggregated units 
are sometimes used to represent the socio-economic sta-
tus of individuals.

The impact of covariate aggregation in classical epide-
miological studies has been well described, but in spatial 
epidemiologic studies the impact of such aggregation has 
not been explored in great detail. Many studies reviewed 
have simply combined the covariates at different scales 
in the process of spatial analysis, ignoring completely the 
potential effects of covariate aggregation [52–54]. For 
example, Raso et al. [55] used an integrated approach for 
risk profiling and spatial prediction of coinfection with 
Schistosoma mansoni and hookworm for western Côte 
d’Ivoire through combining demographic, environmen-
tal, and socioeconomic data, where the Normalized dif-
ference vegetation index and land surface temperature 
data with a spatial resolution of 1  km and the Rainfall 
estimate data with an 8 km spatial resolution were used.

Hierarchical modeling and analysis for spatial data, 
which considers the spatial relationships and hierarchi-
cal structures is one promising approach for dealing with 
covariate aggregation [56]. For example, Yang et al. [57] 
used a hierarchical multi-level model to explore the risk 
factors of schistosomiasis japonica by nesting the individ-
ual variables such as gender, age and occupation within 
the village level variables such as type of S. japonicum 
endemic area, drinking water source, and sewage treat-
ment. However, methods to correct the covariate aggre-
gation from different spatial resolutions as described 
above (i.e. not the obvious different scales such as county, 
village, individuals) and the associated impacts on the 
study results remained unexplored.

In the presence of covariate aggregations, the errors 
in the measured locations are not influenced by the 
outcome, or the covariates (γ1 =  γ2 =  0). The covariate 
(X) is not accurate for either the locations or the meas-
urement (γ7  =  0), while the outcome (Y) is accurate 
(γ3 = γ4 = γ5 = 0). The observed data takes the form (L, 
Y0, X).

Location‑based outcome measurement errors
Pure outcome location measurement errors mean that 
the outcome measurements have errors in some loca-
tions (e.g., a case is misclassified as noncase), which will 

only affect the outcome. It becomes more complicated 
because of its location attributes compared to non-spatial 
situations and may include two different types: purely 
outcome measurement errors, and missing outcome 
measurements.

In the presence of purely outcome-based measure-
ment errors or missing outcome measurements [58], the 
errors in the measured locations are assumed to be zero 
(γ0 = γ1 = γ2 = 0). The outcome (Y) is not accurate for 
the measurement (γ3 =  γ5 =  0), while the covariate is 
accurate (γ6 = γ7 = γ8 = 0). The observed data takes the 
form (L0, Y, X0), as there is only mismeasurement of the 
outcome.

Purely outcome measurement errors
In order to describe this form of measurement errors 
we introduce a simple example with a binary outcome. 
Suppose there are four locations and the true outcome 
includes two cases and two controls as shown in Fig. 2a. 
Say there are two measurement errors. Figure  2b–g 
shows six possibilities with different spatial patterns: 
one two-case misclassification, one two-control mis-
classification, and four one-case and one-control 
misclassifications.

In schistosomiasis studies, the fecal examination is 
always used as the “gold standard” test to diagnose a dis-
ease. However, as it is more difficult, and potentially more 
time consuming, to prove the complete absence of eggs 
in a clean stool sample than it is to prove the presence 
of eggs in a contaminated sample, especially in the low 
endemic regions, there could be many false negatives. In 
this situation, we may expect preferential misclassifica-
tion of (L, Y0 = 1, X) to (L, Y = 0, X). Another example 
follows from the surveillance of the highly pathogenic 
avian influenza (HPAI) H5N1. Many farmers are reluc-
tant to report H5N1 cases among their livestock because 
of the considerations of economic loss [59, 60]. Hence, 
many locations with HPAI H5N1 cases are subsequently 
misclassified as locations without cases. These results are 
then linked with spatial location such as residential or 
farm address for spatial epidemiological studies, where 
the location-based outcome measurement errors occur. 
This will bias the results of spatial epidemiologic studies.

Li et  al. [61] found that the misclassification of birth 
defects can elevate the state-wide congenital anomaly 
reporting rate from 1.1 to 1.8 % of live births, and after 
removing the misclassified data geographic clustering 
in congenital anomaly reports disappeared. Bihrmann 
et al. [62] explored Bayesian logistic regression to adjust 
the outcome misclassification and concluded that adjust-
ment for misclassification must be included to produce 
unbiased regression estimates.



Page 7 of 12Zhang et al. Int J Health Geogr  (2016) 15:21 

Missing outcome measurements
Outcome measurements may be completely miss-
ing at some locations for various reasons such as non-
responses, uncorrected recording errors, and loss of 
records. Zukovi and Hristopulos [63] attempted to 
address the problem of missing values estimation on 
two-dimensional grids by means of spatial classification 
methods based on spin models. The “spin” variables pro-
vide an interval discretization of the process values, and 
the spatial correlations are captured in terms of interac-
tions between the spins. The spins at the unmeasured 
locations are classified by means of the “energy match-
ing” principle: the correlation energy of the entire grid 
(including prediction sites) is estimated from the sample-
based correlations. They also compared the spin-based 
methods with standard classifiers such as the k-nearest 
neighbor, the fuzzy k-nearest neighbor, and the support 
vector machine (SVM), finding that the spin-based clas-
sifiers provide competitive choices. While in classical 
statistics, the techniques such as multiple imputation 
have been widely studied [64], the extension of these 
approaches to address missing data in spatial analyses 
has not received wide attention. Within the framework 
proposed in this work, the true and unobserved Y would 
be replaced by Y0, estimated via a function-dependent on 
both spatial and non-spatial terms. In Manjourides et al. 
[58], the missing outcomes were imputed based on both 

the distance from the nearest health center and a dis-
ease-specific covariate that was not spatially dependent. 
Assuming the covariates are measured with no errors, 
non-zero gammas could be present in the estimation of 
the distance from the nearest health center (nonzero γ0, 
γ1) and in the estimation of the outcome (non zero γ3, 
γ4). If we assume that the location and covariate are both 
measured without errors, then following the reasoning 
from multiple imputation, we could set γ4 equal to the 
average of the observed Ys times an indicator that is 1 
when Y is unobserved and 0 otherwise.

Location‑based covariate measurement errors
Pure covariate location measurement errors occur when 
imprecise locations are used for covariate measurements. 
Covariate measurement errors have been commonly 
observed in public health studies. Li et  al. [65] showed 
that ignoring this type of measurement errors would 
result in attenuated regression coefficients and in inflated 
variance components. For spatial covariate measurement 
errors, the imprecise address proxies are the major issue, 
while the traditional nonspatial covariate measurement 
errors has been studied widely and will not be discussed 
further [66, 67].

Imprecise address proxies occur when a single meas-
ure (e.g., central monitor data or spatial average esti-
mates using data from multiple monitors) is used to 

Fig. 2 Location-based outcome measurement errors (a is the correct patternand b–g shows the six possibilities with different outcome measure-
ment errors). Filled circles represent cases and hollow circles represent controls
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characterize a covariate such as ambient pollutant levels 
across a study area [68]. Only under the strong assump-
tion of spatial homogeneity, will the problem of address 
proxies be avoided.

Few studies have reported and compared the positional 
discrepancies between address proxies and the exact 
address they are supposed to represent. Bow et  al. [69] 
determined the locations in meters for both the street 
address (location of residence) and postal code location 
for each cardiac catheterization case in an urban Cana-
dian City and found that 87.9  % of the postal code loca-
tions were within 200  m of the true address location 
(straight line distances) and 96.5 % were within 500 m of 
the address location, suggesting in this case the postal code 
locations may be a reasonably accurate proxy for address 
location. However, Healy et al. [70] quantified the magni-
tude of distance errors and accessibility misclassification 
that result from several commonly-used address proxies 
in spatial epidemiologic studies. They found that using 
address proxies based on large aggregated units such as 
centroids of census tracts or dissemination areas can result 
in large positional discrepancies (with median errors of 
343 and 2088 m in urban and rural areas, respectively) and 
the commonly used proxies for residential address such as 
postal code centroids can also have large positional dis-
crepancies (median errors of 109 and 1363 m in urban and 
rural areas, respectively), and are prone to misrepresenting 
accessibility in small towns and rural Canada. Lo Iacono 
et al. [71] found that mapping owner addresses as a proxy 
for horse location significantly underestimates the risk of 
an outbreak of African horse sickness (AHS) in Great Brit-
ain. Duncan et al. [72] used three different “neighborhood” 
definition, including specific home addresses, census block 
groups, and census tracts, to explore how neighborhood 
definition influences the measurement of youths’ spatial 
accessibility to tobacco retailers and found that measure-
ments of neighborhood exposures likely vary depending 
on the definition of “neighborhood” selected. Accordingly, 
address proxies should be used with caution in spatial epi-
demiologic researches, which can lead to the associated 
nonspatial covariate measurement errors and further bias 
the results.

In the presence of location-based covariate measure-
ment errors, we observe the outcome (Y) accurately 
(γ3 =  γ4 =  γ5 =  0) and the measured location errors are 
zero (γ0 =  γ1 =  γ2 =  0). The errors are completely con-
tained in the covariates which are not accurate (γ6 ≠  0, 
γ7 ≠ 0, γ8 ≠ 0). The observed data takes the form (L0, Y0, X).

Covariate‑Outcome spatially misaligned measurement 
errors
Covariate-Outcome spatial misaligned measurement 
errors comes from the process of alignment between 

covariate and outcome, which is mainly caused by the 
inconsistent measurement or usage of location data. The 
outcome and the covariates are often observed at dif-
ferent locations or aggregated over different geographi-
cal units. Such data are said to be spatially misaligned. 
For example, a point-to-point misalignment problem 
arises when relating air quality measurements, observed 
at monitors (points), and birth weights observed at the 
residential locations of the mothers (different points). 
In many spatial epidemiologic studies, the locations of 
covariates and health outcomes do not match.

Standard regression methods cannot be applied to 
such misaligned data. To overcome this problem, several 
methods have been proposed. Most approaches involve 
directly using predictions from statistical exposure mod-
els that incorporate spatial structure [73–75] such as 
kriging and its extensions [76], Gaussian process (GP) 
modeling and Bayesian smoothing [77, 78], penalized 
regression splines [73, 79], and kernel smoothing [80], 
among others. The most common strategy is to employ 
one of the previously mentioned models to predict 
covariates at locations with outcomes and then estimate 
a regression parameter of interest using the predicted 
covariates. For example, Higgins et al. [81] used polyno-
mial regression to generate covariate predictions when 
outcomes and covariates were misaligned. Waller and 
Gotway [82] used kriging to predict exposures and used 
resampling to account for the uncertainty in using the 
predictions in place of the true values. Kunzli et al. [74] 
assigned exposure values for subject-specific locations 
derived from a geostatistical model and used weighted 
least squares in the subsequent health effects model with 
the weights specified as the inverse of the standard errors 
(SEs) from the exposure kriging model. For a similar 
problem, Madsen et  al. [83] considered both a general-
ized least squares (GLS) estimator with a bootstrap type 
variance estimator and a maximum likelihood approach 
that jointly fits the exposure and health models.

Such covariate predictions contain measurement 
errors since the predicted values will not equal the true 
exposures [84, 85]. Using predictions rather than true 
exposures in health modeling introduces two sources 
of measurement error-Berkson-like errors arising from 
smoothing the true covariate surface and classical-like 
errors coming from estimating the covariate model 
parameters, which have been widely discussed in envi-
ronmental epidemiology [86]. For example, when assess-
ing health effects of particulate matter (PM) constituents, 
it is necessary to effectively estimate exposure and to 
account for exposure errors induced by spatial misalign-
ment to avoid bias [87]. After characterizing the spatial 
misalignment using geostatistical methods, Goldman 
et al. [88] found that errors due to spatial misalignment 



Page 9 of 12Zhang et al. Int J Health Geogr  (2016) 15:21 

resulted in average risk ratio reductions of <16 % for sec-
ondary pollutants (O3, PM2.5 sulfate, nitrate and ammo-
nium) and between 43 and 68  % for primary pollutants 
(NOx, NO2, SO2, CO, PM2.5 elemental carbon) while 
pollutants of mixed origin (PM10, PM2.5, PM2.5 organic 
carbon) had intermediate impacts. Sheppard et  al. [89] 
found that measurement errors resulting from spatial 
misalignment led to an attenuation of acute health effect 
estimates of 7.7 % for PM2.5 mass. Ong et al. [90] found 
that relative to geographically corrected data, spatial 
misaligned information produced a modest bias in the 
aggregated number of facilities at risk but generated a 
substantial number of false positives and negatives.

Some methods to correct for spatial misalignment 
have been proposed. Lopiano et  al. [91] developed an 
approach for an REML-based estimated generalized 
least squares (RBEGLS) estimator accounting for the 
misalignment error structure and estimating covariance 
parameters using likelihood-based methods. They also 
provide insights into when it is important to fully account 
for the covariance structure induced from the different 
error sources. These researchers also developed another 
pseudo-penalized quasi-likelihood algorithm to account 
for spatial misaligned errors and showed by simulation 
that the method performs well in terms of coverage for 
95  % confidence intervals [92]. Szpiro et  al. [93] char-
acterized the measurement errors by decomposing it 
into Berkson-like and classical-like components and 
developed two correction approaches of the paramet-
ric bootstrap and the “parameter bootstrap” [86] and 
also proposed another robust method for the spatially 
misaligned errors to correct finite-sample bias and cor-
rectly estimate standard errors. Gryparis et al. [84] devel-
oped a generalized linear model framework for spatial 
misaligned measurement error modeling; Chang et  al. 
[94] addressed the challenge of exposure measurement 

errors due to spatial misalignment through measurement 
error modeling and developed a Bayesian framework to 
fully account for uncertainty in the estimation of model 
parameters. Bayesian hierarchical models which account 
for uncertainties due to spatial misalignment were also 
applied to spatial correlated exposures measured with 
errors by Smith et al. [95]. and Molitor et al. [96].

In the presence of Covariate-Outcome spatial mis-
aligned measurement errors, the covariate is not accurate 
(γ6 ≠ 0, γ7 ≠ 0, γ8 ≠ 0). The mismeasured locations and 
the outcome (Y) are only affected by themselves (β0 ≠ 1, 
β4 ≠ 1). The observed data takes the form (L, Y, X).

Discussion
Like measurement errors in classical epidemiology, spa-
tial measurement errors are also ubiquitous in spatial 
epidemiology. Some types of errors have been widely rec-
ognized and extensively studied in other disciplines. For 
example, geocoding errors arising from non-instrumen-
tal measurement errors are widely discussed in the field 
of geography and concern with spatial misaligned meas-
urement errors have been raised in air pollution studies. 
However, we are not aware of previous efforts to system-
atically review and classify the types of spatial measure-
ment errors.

We proposed a classification framework for spatial 
measurement errors which includes four categories (see 
summaries in Table 1). We then integrated these with a 
unified theoretical model; while we illustrated each type 
of errors as an isolated effect, in practice, many measure-
ment errors can occur simultaneously. For simplicity, we 
have described only non-differential errors since differ-
ential errors (i.e. those errors in the probability of errors 
differs by location) will cause even greater mischief.

In this effort to review spatial measurement errors, 
we hope to attract the other spatial epidemiology 

Table 1 Summaries of spatial measurement errors

L = L0 + ΔL, where ΔL = γ0L0 + γ1Y + γ2X + εL; Y = Y0 + ΔY, where ΔY = γ3L + γ4Y0 + γ5X + εy; X = X0 + ΔX, where ΔX = γ6L + γ7Y + γ8X0 + εX. (L0, Y0, X0), (L, Y, X) and (ΔL, 
ΔY, ΔX) are the true measures, observed values and measurement error of the outcome location, outcome, and covariate measures, respectively

Classes Subclass Observed data Nonzero γs

Pure spatial location measurement errors Instrumental errors (e.g., global positioning  
systems errors)

(L, Y0, X) γ0, γ6, γ8

Non-instrumental errors: multiple address (L, Y0, X) γ0, γ6, γ8

Non-instrumental errors: geocoding errors (L, Y, X) γ0, γ2, γ3, γ6

Non-instrumental errors: outcome aggregations (L, Y, X) γ0, γ3, γ4, γ8

Non-instrumental errors: covariate aggregations (L, Y0, X) γ0, γ6, γ8

Location-based outcome measurement errors Purely outcome measurement errors (L0, Y, X0) γ4

Missing outcome measurement (L0, Y, X0) γ4

Location-based covariate measurement errors Location-based covariate measurement errors (L0, Y0, X) γ6, γ7, γ8

Covariate-Outcome spatial misaligned  
measurement errors

Covariate-Outcome spatial misaligned  
measurement errors

(L, Y, X) γ0, γ4, γ6, γ7, γ8
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researchers’ attention to this common challenge. We 
believe there is opportunity for methodologists to 
develop new approaches for addressing spatial measure-
ment errors, and provide some useful tools for applied 
spatial epidemiologists. We know our classification may 
be not perfect (e.g., geocoding errors can further result in 
the exposure/covariate measurement errors, suggesting 
there might be somewhat “overlapping”) [97], but we are 
confident that this first attempt to add structure to this 
issue will generate greater discussion, consideration, and 
solutions to these very practical problems.

Conclusion
Spatial measurement errors are ubiquitous threat to the 
validity of spatial epidemiological studies. We propose a 
systematic framework in this study for understanding the 
various mechanisms which generate spatial measurement 
errors and present practical examples of such errors and 
potential solutions.
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